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Abstract

The dependence of the strain rate on the Hugoniot stress and the effective viscosity
is derived for steady wave propagation, by considering the balance between viscous and
driving forces in the steady wave. The strain rate in elastic-plastic solids is shown to vary

as the fourth power of the Hugoniot stress, which is in agreement with experimental data.
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Advances in time resolved measurements of shock wave profiles have prompted many
theoretical and experimental investigations of shock wave structure. The occurrence of
steady waves (time independent wave profiles) in solids, first observed by Johnson and
Barker!, has yielded information on the relationship between the strain rate and effective
viscosity in the shock front. Grady?® obtained the interesting theoretical result that the
maximum value of the strain rate in an elastic-plastic steady wave is proportional to ofy,
where oy is the Hugoniot stress. This result agreed with experimental data for aluminum.3
A compilation of more recent experimental data for many solid materials* shows the same

quartic dependence of strain rate on Hugoniot stress.

Although Grady's theoretical result is in agreement with experirnental data, the
derivation relies on the postulated invariance of a quantity called the “shock adiabatic
invariant”. In this correspondence, we present a general derivation for the strain rate de-
pendence of the Hugoniot stress, for steady wave compression of solids, liquids, and gases, by
considering the balance between viscous and driving forces in the steady wave. The “shock
adiabatic invariant” is not needed. In particular, we show that e~ ¢}, for elastic-plastic

solids, by using well known relations from plasticity theory.

A state of stress (o;;) can always be divided into isotropic (P4;;) and deviatoric (o/;)
components:

0ij = oj; + Pby;, (1)

where §;; is the Kronecker delta, and the pressure P is the mean stress (oke/3). We use

the convention that compressive stresses are positive. We are interested in one-dimensional
waves, SO we write

o=0'+P, 2

where o and o' represent components of stress in the direction of wave propagation, that is,

longitudinal stresses. We assume that the pressure can be represented by a Mie-Griineisen

equation. We write®

oC2e Yo€ .
Pe,E) = —ol(e) + (1"__—86)2 (1 = T) + poo b, (3)
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where e = 1—p, /p is the longitudinal strain (which is identical to the volumetric strain for
1-d loading), K is the specific internal energy, p, is the reference density of the material, ¢
is the bulk sound speed at the reference density and temperature (300K), s is the slope of
the shock velocity-particle velocity relation, which is assumed to be linear, and the volume
dependence of the Griineisen gamma  is assumed to be py = py7,. o};(e) is the longitudinal
deviatoric stress along the Hugoniot. {Equation (3) reduces correctly to Py = —oj; + o,
for Hugonibt states.) We have ignored the effects of the Hugoniot-Elastic-Limit and the
elastic deviatoric specific internal energy, which are negligible, in Eq. (3).5® Substituting
Eq. (3) into Eq. (2), we obtain:

ﬂ(l_'r_oe

o=0c'—ohle)+ [ —scP 5 ) + po Vo E. (4

We are interested in the effect of viscosity on the time dependence of ¢. In general, there
are shear and bulk viscosities, however, by choosing a Mie-Griineisen equation, we have
neglected the bulk viscosity. Thus, Eq. (4) shows that the time dependence of ¢ is due to

the time dependence of ¢, and we regard o' —o};(€) as a viscous stress. We write
Ovis = né =o' - 0'}[(6), (5)

where 7 is the viscosity. This definition of o, satisfies the necessary boundary conditions:

Before the shock arrives, o' = o};(e=0) = 0 and e = 0. After the shock passes, o' =

o}(ex) and e = 0. During the shock, ¢’ 7= o);(e). because the Hugoniot is not a thermo-

dynamic path, thus, e 7 0.

It is well known that as the strain rate increases, the shock rise time decreases. We

let the viscosity reflect this experimental observation. We write
n=8e*, 0<a<l (60)
where 8 is a constant. We rewrite Eq. (6a) using Eq. (5):

ol = b8 (6b)
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« must be less than one, so that ¢’ — 0, as ¢ — 0. « must be greater than zero, so
that the viscosity decreases, as the strain rate increases. (a = 0 corresponds to Newtonian

viscosity.)

When steady shocks are present, the longitudinal stress must lie on the Rayleigh line

(o). We write

oge  p,ce -
e (L—sen )’ @

Op =

where oy is obtained by evaluating Eq. (3) along the Hugoniot. Combining Eqs. (4), (6b),

and (7), we obtain

PoC?€  _ csi—a , PoC€ Yo
(1—sem)r b+ (1 — se)? (1 2 ) +poNo b, )
where Ep is the specific internal energy along the Rayleigh line. Using Eq. (7), we obtain
v
ERz—f oHe 57 Von dx—VUHez (9)
v, €H

Substituting into Eq. (8) yields

-1

e= (i"’—? ((1— sex)~® — (1—se)72) (1 - %)) . (10)

When a and § are specified, Eq. (10) gives the strain rate at all points in the steady wave

(0 S BS BH).

Equation (10) can be approximated by an expansion to lowest order in e, when oy

is small (o < 20GPa ). We write

en (2spa(:26_le(eH —~ e)) = (11)

We take the maximum value of the strain rate (€,,), and express it to lowest order in og.

)

In solids, the viscosity can be attributed to plasticity. Consequently, we assume that

We obtain

i
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the total strain rate can be divided into elastic and plastic components, thus Fq. (6b) can

be rewritten as
ol =8l = o(ef + e”) ¢y 6(6‘"1“" (13)
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where we have assumed that the total strain rate is mostly plastic. We may obtain a value
for a using a plasticity relationship postulated by Taylor”

oo A%, (140)
and the Orowan relation

£f = Aub, (14b)
where A is the dislocation density, v is the dislocation velocity, and bis the Burgers vector.
Equations (14a,b) imply that

o' o (eP)0. (15)

Comparing Egs. (13) and (15), we obtain

a=0.5. (16)

Substituting Eq. (16) into Eq. (12) yields

2
s __f_ 8 \ 4 :
¢= (26.0002) H- (17)
Equation (17) predicts the same functional dependence noted by Grady for a variety of
materials? [Be, U, Fe, MgO, SiO,, Al, Cu, and Bi] 3
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